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in neglecting electron-electron collisions. Although, in 
first order, these contribute nothing to electrical 
resistivity there may be a contribution to a configura-
tional effect. The magnitude of the contribution remains 
to be seen. The foregoing calculation allowed only for 
collisions with nonelectronic scatterers. 

I. INTRODUCTION 

SEVERAL papers have appeared recently on the 
quantum mechanics of parametric amplification. 

This aspect of the otherwise well-known parametric 
process has become interesting because of the develop
ment of sources of high-intensity electromagnetic fields 
with carrier frequencies in the infrared and optical 
regions. It is only in the high-frequency domain that 
the quantum aspects of the field should appear, and 
one suspects that their major effect would be to add a 
noise field to any signal and thus determine the lower 
limit for noise in a parametric amplifier (paramp). 

Louisell and his co-workers,1 in two papers, have 
presented a very interesting and instructive treatment 
of quantum fluctuations and noise in parametric proc
esses. They have employed a model which treats the 

1 W. H. Louisell, A. Yariv, and A. E. Siegman, Phys. Rev. 124, 
1146 (1961); J. P. Gordon, W. H. Louisell, and L. R. Walker, 
ibid. 129, 481 (1963). Hereafter these papers are designated by 
LYS and GLW, respectively. 
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signal and idler modes as lossless, and have solved 
4 exactly the Heisenberg equations of motion for two 

modes coupled by a classical harmonically varying term. 
1 It is this classical treatment of the pump field which 
] renders an exact solution of the problem possible, and 

we shall adopt it in our work. However, if the signal and 
^ idler modes are treated as lossless, the initial transients 

determine the behavior of the amplifier to a large extent. 
i No steady state is established and the correlation prop

erties of the noise cannot be discussed. LYS obtains an 
output field in the absence of any input fields, and draws 
the conclusion that the proper way to take into account 
the quantum effects inherent in the parametric process 

^ is to add to any real input noise energy initially present 
in the modes an effective § photon into both the signal 

, and idler modes. A priori, one cannot say whether this 
result is specific to lossless modes; it is therefore of real 

> interest to investigate a quantum-mechanical model for 
\ parametric amplification employing lossy modes, in 

which model transients die out and the steady-state 
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We derive the fundamental noise properties of a parametric amplifier (paramp) which is driven by a 
monochromatic pump but which has many lossy signal and idler modes. We Use a quantum-mechanical 
approach similar to that employed by Louisell and co-workers in their treatment of paramps and lasers 
with lossless modes. Our results are not directly deducible from the lossless mode analysis, but they do give 
the same limiting noise temperature as that analysis. This minimum noise temperature is the same as that 
of an ideal laser. In fact, we find that one can always design a laser whose field correlation functions would 
be the same as those of any given paramp. Many results for laser noise in various configurations can be 
carried over directly and applied to parametric amplifiers by using correspondence substitutions which we 
set down. For example, in analogy to Pound's description of the maser (in terms of a Nyquist theorem ex
tended to negative temperatures), the calculation of paramp noise is found to be equivalent to applying 
Nyquist's theorem to both the active and passive elements in the (classically computed) equivalent circuit 
of a signal mode of interest. From this one obtains the spectra of effective noise generators which, when 
amplified in the circuit, duplicate the "quantum" as well as thermal noise that is present in the output. 
The Nyquist theorem is extended to apply to each active element by simply taking the element tempera
tures to be minus the real temperature of the corresponding idler mode (whose parametric coupling into 
the signal circuit gives rise to that element) multiplied by the ratio of the pump minus the idler to the idler 
frequencies. 
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noise can be correctly evaluated. Doing this, we find 
that the correct way to account for quantum effects in a 
steady-state parametric device is, in effect, to perform a 
classical analysis using Nyquist's theorem to associate 
a noise generator with each passive lossy element but, 
wherever the Planck function (or average photon 
number n) refers to an idler mode, using instead one 
plus that Planck function (i.e., n—> 1+n). The losses 
in the signal mode under consideration contribute ac
cording to the normal Nyquist relations. 

The easiest way to introduce loss into a mode is to 
couple it to a continuum of harmonic oscillators. The 
Heisenberg equations of motion are still linear and thus 
can still be solved exactly. Such a model for lossy modes 
has been employed by a host of authors; Gordon, 
Walker, and Louisell2 have recently used it in a discus
sion of the quantum statistics of masers and attenuators, 
and we should like to call to the attention of the reader 
their simple and clear exposition. 

In solving the parametric amplifier problem we were 
struck by the fact that one could construct a one-to-one 
correspondence between the theory of a laser using a 
single homogeneously broadened transition line3 and the 
parametric amplifier using a single idler channel. 
(Furthermore, if there are many idler channels, then 
there is a corresponding laser which is being driven by 
several transition lines, or equivalently, by an inhomo-
geneously broadened line.) This simple correspondence 
shows without a doubt that the limiting noise figures for 
parametric amplifiers and for lasers are the same. In 
fact, rather than derive all the paramp noise character
istics in detail, we will be content with deriving the 
equivalent laser parameters so that the wealth of 
formulas for many operating conditions may be im
mediately used for paramps. 

To exhibit the laser to paramp correspondence, we 
shall review very briefly in Sec. II the spectral distribu
tion of the noise from a single-mode laser operating 
under steady-state conditions. This topic has been 
covered by many authors3*4 using semiclassical treat
ments of radiation. McCumber5 and Wells6 have pre
sented full quantum treatments which result in the 
same expression, and, if the system of GWL2 is slightly 
modified to give a steady state for the laser, their model 
also substantiates the semiclassical result for an inhomo-
geneously broadened line. The semiclassical treatments 
of lasers were correct because the dependence of spon
taneous emission rates on cavity response functions7 

2 J. P. Gordon, L. R. Walker, and W. H. Louisell, Phys. Rev. 
130, 806 (1963). This paper contains a list of references to other 
work describing models for losses. Hereafter we refer to this paper 
as GWL. 

8 William G. Wagner and George Birnbaum, J. Appl. Phys. 32, 
1185 (1961). 

4 R. V. Pound, Ann. Phys. (N. Y.) 1, 24 (1957); J. Weber, Rev. 
Mod. Phys. 31, 681 (1959); M. W. Muller, Phys. Rev. 106, 8 
(1957); M. W. P. Strandberg, ibid. 106, 617 (1957). 

6 D. E. McCumber, Phys. Rev. 130, 675 (1962). 
* W. H. Wells, Ann. Phys. (N. Y.) 12, 1 (1961). 
7 J. Weber, Phys. Rev. 108, 537 (1957). 

was known. It is the extension of these ideas to treat 
the rate and spectral distribution of the analog of spon
taneous emission in the signal mode of a parametric 
amplifier with which we will be primarily concerned 
here. We find that one can understand the noise prop
erties of various paramp configurations by simply 
thinking of an equivalent laser. Specifically, we find that 
(a) the paramp with single-idler mode and single-pump 
frequency is equivalent to a laser activated by a single 
homogeneously broadened atomic line and (b) that a 
paramp with several idler modes (of possibly different 
widths and temperatures) is equivalent to a laser acti
vated by several homogeneously broadened atomic lines 
(with possibly different widths, heights, and inversions). 

II. SINGLE-MODE LASER 

For subsequent reference, we collect here various 
results from the theory of a laser using a homogeneously 
broadened transition line.3-5 Let the response of the 
cavity be approximated by the normalized impedance8 

Zs(0) = |7 s - i (0 -o) s ) = [F^O)]"1. The two levels of the 
maser "atoms" (i.e., molecules, ions, atoms, etc.) con
nected by the transition of interest have populations 
Ni and Ni in the lower and upper states, respectively, 
and we consider the case where the resonant response 
of the atoms Fa(Q) is of a Lorentz shape characterized 
by the frequency wa and width ya: [Fa(0)]~1=Zo(0) 
~ §7a—i(0—Wa). Let the mean-square value of the 
interaction energy transition matrix element per photon 
be A2=oosfx

2/2V, where n is the transition dipole moment 
and V is the volume of the cavity mode corrected by a 
factor which is the mean-square field in the mode divided 
by the mean-square field at the laser molecules. (We will 
use rationalized units in which ft=l). Then the laser 
itself has an impedance 

Z(O) = [F(O)]-1=Z.(0) - (N2- N0AWa(Q). 

In order to compare the characteristics of a paramp 
signal mode with a laser mode we will compare their 
various multitime correlation functions. Actually, we 
will find that this comparison may be reduced to a 
comparison of the stationary part G(T'-—T) of G(r,if) 
= Tr[]at(T){z(r/)p]. Here a(r) is the annihilation operator 
for the cavity mode in the full Heisenberg representation 
of the entire maser (consisting of interconnected losses, 
modes, and atoms). The equilibrium density matrix p 
for the entire system may be well approximated by the 
matrix for the uncoupled losses, modes, and atoms for 
such high-Q modes as are employed for lasers and 
paramps. In this high-Q case we have the well-known 

8 We will use admittances F(0) [and their inverse impedances 
Z(0)] which, for convenience, give the response of a complex 
quantity (i.e., the expectation value of the annihilation operator 
a for the mode) to a real driving force on the mode. The frequency 
response of the creation operator cfi is, of course, F*(—Q), and the 
responses of the real coordinate q and conjugate momentum p of 
the mode are simply given in terms of the F(Q) by using the well-
known relation icft— (p-\~uasq)/(2<ti8)

112. 
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result for lasers that, for positive 0, 

/

oo 

dxG(x) expitix 
-00 

is very nearly the spectral power density in the cavity 
mode, and that, if all the losses which comprise y8 are 
at the same temperature Ta, then 

g(Q)= | F(0) 12l2ns ReZ8(ft)+2A7
2A

2 ReFa(0)], 

ysn8+N2(»W2Vha/l(V-Ug)2+ha2l 

(la) 

(lb) 

where l/w,=exp(ho)8/kT8) — 1. The other two time corre
lation functions will not give any more information than 
(1) does for high-Q modes: Tr[a(r)a t(r')p] may be ob
tained f romG(r» ; Tr[a(T)a(/)p]aiidTr[at(T)at(T,)p] 
are of order (ys/us)

2 smaller than the others near the 
frequencies of interest. Since in an ideal laser the noise 
given by (1) is from a large number of statistically 
independent sources (atoms and the loss mechanism), 
the central limit theorem will apply and the noise will 
be Gaussian.9 Therefore, all correlation functions of 
higher order can be determined with a knowledge of 
G(T). We will find that the same things may be said 
about the ideal paramp, hence, a comparison between 
the maser and paramp on the basis of their respective 
G{T) can give a strong analogy between them. 

The fluctuations in the laser cavity mode described 
by (1) do not include "zero-point" fluctuations, but 
represent the energy which the mode can actually give 
up to a detector as noise power. As a matter of practical 
interest, the effective noise temperature at ti of the 
simple laser amplifier described by (1) is generally de
fined as that temperature to which the input impedance 
must be raised from 0° K in order to double g(Q). It is 
this noise temperature which can never be less than 
ho)s/(k ln2) for lasers; and, as we will find, the same thing 
can be said for paramps. 

III. THE PARAMETRIC AMPLIFIER 

We consider at first a model for parametric processes 
in which there are just two harmonic oscillators, the 

9 When the noise fields are too large, they may no longer be a 
negligible perturbation on a single atom despite the smallness of 
the coupling per atom occasioned by the large number of atoms. 
In this case the diagonal elements of the density matrix for the 
atoms are no longer independent of the off-diagonal elements, the 
idea that spontaneous emission is independent of the amplified 
fields no longer applies, and the noise will not be Gaussian. How
ever, here we will ignore the complex nonlinear case and restrict 
ourselves to considering only ideal laser and parametric amplifiers 
—ideal in the sense that the number of atoms is so large that 
significant gain exists with coupling constants so small that the 
change in the atomic density matrices due to the presence of the 
amplifier noise and signal fields can be neglected. In this limit 
the equations of motion are linear and the noise is Gaussian. 
The complex nonlinear problem has received some preparatory 
study for which we refer the reader to S. G. Rautian and I. I. 
SobeFman, Zh. Eksperim. i Teor. Fiz. 41, 456 (1961) [English 
translation: Soviet Phys.—JETP 14, 328 (1962)]; R. J. Glauber, 
Phys. Rev. 130, 2529 (1963) and ibid. 131, 2766 (1963); R. J. 
Glauber, Phys. Rev. Letters 10, 84 (1963); L. Mandel and E. 
Wolf, ibid. 10, 276 (1963); E. C. G. Sudarshan, ibid. 10, 277 
(1963); ibid. Ref. 6. 

signal mode with bare frequency o>s° and an idler mode 
with o)i° as its uncoupled frequency, which are coupled 
by a harmonically varying parameter pe~iupt. Loss is 
introduced into the system by coupling each of the 
modes to its own set of harmonic oscillators with fre
quencies coy; the strength of the coupling is Xy. In the 
final limit, the number of loss oscillators becomes in
definitely large, and the strength Xy infinitesimal in such 
a way that the product of Xy2 and the spectral density 
of oscillators cr(coy), which is defined so that 

Jlj ~* / <r(<tij)da)j/2w, (2) 

remains finite, and 

XyV(c0y)^Z(c0y). (3) 

The dynamics of the model are specified by the com
mutation relations, 

[>*,a*+] = [csy A / ] = [>* A1*] = laj,Cijt2 = 1, (4) 
(all other commutators vanish), and the Hamiltonian is 

H=o28Was+o)iQa2ai+${asU%h-i<*pt+ a^e™*1) 
+Ly(wsyC8y

tGy+co^^ 
+ L y X<y(«»^t+tf<t^y)+(a8+af)J9(t) 

+ (04+OiWt), (5) 

where the subscripts s, i, and ,; refer to the signal, idler, 
and loss oscillators, respectively. (All coupling constants 
are taken to be real, as may be done by suitably defining 
the creation and destruction operators.) We have in
cluded in the Hamiltonian terms representing currents 
driving the fields of the signal and idler modes. The 
introduction of such terms facilitates the definitions of 
the admittances and gain of the amplifier. 

The Heisenberg equations of motion are 

idas(i) 
=«.°a,(*)+£/ XsjCsjiO+^^e-^p'+iJsit), 

idai(t) 

dt 

idc8j(i) 

dt 
iddjit) 

dt 

-•o>i0ai(t)+Zj K-Cijifi+PasKfie-^pt+iJiit), 

= W8yC8y(O+X8y<X500, 

= Wt-yCiy(/)+X<yat</). 

(6) 
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These operator equations may be solved exactly by 
using the Fourier-Laplace transform. The subscript zero 
on an operator denotes its initial value and the trans
form of a function is designated by the frequency argu
ment 0. Eliminating the transforms of the loss oscillators 
algebraically, we obtain 

ZS(QK(Q) = a 8 0 +/a(0)+Ei X,^y0(0- u8j)~
l 

-i@at(Q-o)P), (7) 

- Z < ( - 0)a,t(0) = orf+W) - E i ^cmKQ+mj)-1 

+il3a8(Q+a>p), (8) 

where 

*Z t (O)«0-«,°-Ey VCO-w./)"1 , (9) 
and 

*Z*(Q) = - O o ^ - E i V ^ - w ^ ) " 1 . (10) 

In the limit of a continuum of loss oscillators, the func
tion 5Z(0), defined by 

dZ(Q) = i E / X/(0-wy)-1 -» 

i\K(o))(Q~-u)~ldo>/2T1 (11) 

is. almost a constant over the frequency domain of 
interest. 8Z has a real part, §y, and an imaginary part, 
o)—co°} which produce dissipation and a frequency shift, 
respectively, for the channel. The damping constant is 
given by 

7 = E i 2TXi*(0-*v) -> JT(0)-2 ReZ(O). (12) 

We will call the shifted center frequencies of the signal 
and idler modes o)s and «*, respectively. 

The solution of Eqs. (7) and (8) for as(Q) is 

a s(0)=F s s(0)[a s 0+/8(0) 
+ E i X^ s i o (0 -^ i ) " 1 ]+ F.,(fi)[fl*HJ?(0) 

— 23i XtfCtfO^+Oty—Wj,)"1] , (13) 

where 

[FM(0)]-1=Z.(0)+|8»CZ<(«p-0) J"1, (14) 

F n <0)=^F s s (0 ) [Z t K~0) ] - 1 . (15) 

Note that in the continuum limit, Z(Q) has a cut along 
the real axis, across which the real part reverses in 
sign, and so Z**(«—Q)-* —*y</2—i(«—12—co<), which 
causes negative damping or gain in the signal mode. 
Because Y88 and YSi are clearly the response functions 
of the signal mode coordinate to forces applied to the 
signal and idler channels of the paramp, respectively 
(i.e., the gain functions), we may drop J*(0) and /*(Q) 
from the equations and concentrate on the coordinate 
fluctuations. 

The poles in FSS(Q) and Fs*(0) are on a second sheet, 
so that under steady-state conditions as the transients 

die out,10 

+ E y - — . (16) 
o)i—o)ij+iyi/2 

This noise is Gaussian since it arises from many loss 
oscillators, and the central limit theorem should apply.9 

The fundamental correlation function for the signal 
mode field which we will compare with that for a laser 
is, as was explained in Sec. II, 

= Tr[past(r)as(rO] 

= EiXs/1 Y$9(<a9j) | %% exp—w%&r'— r) 

iP^ijYsaitop—toij) 12Mi/ exj>—i(Q)p—Uij)(rf— r) 

' C(«^«« , )HV/4] ~ ' 

where nSj=Tr[pcajo
fcSjo2, and /̂==Tr|jw;<yoc</ot3.'P is the 

density matrix for the system. We shall assume the 
loss oscillators to be in thermal equilibrium, so that 
nSj^ns=[exp(fio)s/kTs)'-1]"1 (the Planck function) 
and similarly for »#. Upon summing over the oscillators, 
one does not get any net contribution from terms like 
Tr{pCjCff}, where j and / refer to different oscillators. 
One should note that m/ is nonzero even if the loss 
oscillators are in their ground states. For harmonic 
oscillators, [c^,%t3= 1, and so tti/= l+w#. In the con
tinuum limit, 

G.(T,rO-+ I g,(Q)e-W~*da/2T, (18) 
J —GO 

where 

gs(Q) = | YSMI HnsKM+im+D^Kiiw^Q) 

XKQ+ui-opy+yWT1} (19) 

or, more generally, 

£S(Q)= | Y8S(Q) 12[>s ReZs(0) 
- 2(m+1)/S2 Re7<(«p- 0) ] . (20) 

The Eqs. (18)-(20) summarize the main content of 
our analysis and they could serve as a basis for the 
analysis of a particular parametric amplifier configura
tion. However, rather than proceed with this analysis 
directly, we will save the effort by demonstrating how 
all the voluminous results for masers and lasers may be 
applied directly to paramps. 

By comparing (19) and (20) with (1) we find a striking 
similarity between the theory of a single-idler para-

10 Note that despite the nearly continuous sum in (13) any 
nonvanishing matrix element (in the unperturbed representation) 
of a8(t) singles out a single-loss oscillator and hence does not 
damp out. 
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metric amplifier with a monochromatic pump and the 
theory of a laser employing a single homogeneously 
broadened transition. For here we observe that the 
quantities in the theories of the laser and paramp can 
be put in a one-to-one correspondence. First note that 
both (1) and (20) are of the form that would result 
from noise sources in the amplifying channel being 
amplified by the power gain of the amplifier. The first 
terms in each represent the amplification of Johnson 
noise originating in the passive cavity elements and 
could have been deduced directly from Nyquist's 
theorem (with Planck's modification). The second terms 
in each represent amplification of noise from the active 
element (which noise is seen to have an irreducible 
minimum). Pound showed11 that for the laser an equiva
lent circuit analysis using Nyquist's theorem would give 
this "quantum" noise also, provided that the definition 
of the element temperature Ta was extended to negative 
values by the formula AT2/iVi=exp(—fio)a/kTa)9 whence 
a negative Planck function times a negative real part of 
the admittance gives the correct positive noise spectrum. 
We will be able to extend this Nyquist mnemonic to 
summarize our paramp analysis by noting the following 
laser-paramp analogies. First, by looking at the | Y(Q) \2 

factors we see that: (a) The analog of the center fre
quency, coa, of the homogeneously broadened laser line is 
wp-cojj (b) the strength of the contribution of the atoms 
to the change of the impedance of the signal channel, 
as measured by (N2-N1)A

2=(N2-N1)a)8 ix2/2V, is to 
be replaced by j32 for a paramp if we take the impedance 
of the idler mode, 

- i Z ^ - Q ) = 0 - ( c o p - ^ ^ 
~Q—(cop—c*>i)+%iyi, 

to correspond to the impedance for the induced dipole 
moment, iZa{®)~ 0—ooa+iiya. Finally, by examining 
the factor describing the active element noise source 
spectra we see that the strength of the spontaneous 
emission driving term in the laser, N2k2—N%u8ix

2/2V, 
has for its counterpart in the parametric system 
(l+tii)l32. This implies that the temperature T charac
terizing the distribution of atoms in the analogous laser 
is obtained from the value Ti of idler loss temperature 
by the relation 

? = (flCCa/K) ln(AV#2) = - (Ua/<*i)Ti. (21) 

T is always negative, and spans the same range of values 
as is realizable for actual lasers. Therefore, the important 
result that an ideal paramp can have as low a limiting 
amplifier noise temperature as an ideal laser, but no 
lower, follows immediately. Furthermore, we now see 
that the entire (single idler) paramp analysis may be 
summarized by saying: Apply the generalized Nyquist 
fluctuation-dissipation theorem to all admittances seen 
(or referred to) the signal mode circuit; treat the active 
elements by the usual relation for passive dissipative 

11 R. V. Pound, Ann. Phys. (N. Y.) 1, 24 (1957). 

elements using a temperature [—rt-(wP—«,-)/«*] in the 
Planck function. 

The extension of the discussion to treat the case of 
several idler modes is quite straightforward: The prob
lem again may be solved exactly, and one needs only 
to sum over the idler modes, which we designate by v, 
in appropriate places. For example, the direct impedance 
of (14) is now 

[F..(Q)]-i=Z.(fl)+E.j9/CZ< ,(«,-0)2-1 , (22) 

and the spectral density of photons (20) becomes 

*.(«) = I F„(0) 12{n8Ks(Sl)-j:v(niv+lW 
X[2Rer<,(« ,~0)]} . (23) 

From these formulas one sees that the paramp with 
many idler modes is equivalent to a laser employing 
many independent atomic lines. Also, it is now obvious 
that the theory of a paramp with several signal and 
several idler modes is equivalent to that of a multimode 
cavity laser driven by several independent atomic lines, 
and that it is also equivalent to using Nyquist's theorem 
throughout each signal mode circuit if one associates 
with each active element seen in a signal mode circuit 
a temperature [—• 7\-V(G>P—«»•„)/«»•„]. Here Tiv is the 
actual temperature of the losses of that z;th idler circuit 
which, reflected into the signal circuit, gives rise to the 
active element. 

We have reanalyzed the laser by modifying the model 
of GWL so that a steady state for the laser results. The 
alteration is simply to couple the electromagnetic mode, 
not to a single set of a large number of independent 
quantum systems in thermal equilibrium as do GWL, 
but to two sets—one dissipative (at a positive tempera
ture) and one active (at a negative temperature). The 
resulting solution for the operator a(t) in the steady 
state may be then compared with the solution (13) for 
the paramp. The comparison gives the same analogy 
between a laser and paramp as we have obtained by 
comparing G(T,T') and shows more directly that all 
correlation functions for the field coordinates must be 
the same for an analogous laser as for a paramp.9 

IV. DISCUSSION 

We may summarize the properties of an ideal multi-
mode paramp with a monochromatic pump by saying 
that a corresponding ideal multimode laser exists which 
has as many atomic lines as the paramp has idler modes 
and which has the same gain and noise properties as 
do the set of signal channels of the paramp. The proper 
values of atomic strengths, widths, and inversions corre
sponding to given idler mode parameters are given in 
the last section. We have also shown that an alternative 
description of the paramp, analogous to Pound's de
scription of the laser,11 is possible through the use of 
Nyquist's theorem on all (passive and active) elements 
referred to a signal-mode circuit; the passive elements 
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generate noise according to the usual generalized Nyquist 
relations, the active elements may be thought of as 
generating noise according to the same relation if the 
effective temperature(s) is taken to be the idler mode(s) 
temperature (s) multiplied by the ratio of signal to sig
nal minus pump frequency. 

In the case of the laser, the usual noise formula (1) 
may be consistently interpreted to mean that the spon
taneous emission of the laser atoms is amplified by the 
amplifier gain, hence the origin of laser noise may be 
said to be spontaneous emission. The question arises as 
to whether one similarly can associate paramp noise 
with a physical effect. The answer is yes; but unlike 
spontaneous emission the analogous effect for paramps 
has probably never been observed. We may examine 
the analogous terms in gs(ft), each of which results from 
a parametrically coupled idler circuit and is of the form 
| Fss(12) 12<j>v(ft), in order to determine the power spec
trum <j>v{Q) of this analogy to spontaneous emission 
noise: 

4>V(G)= -2(l+niv)(3v
2 ReYiv(a)p-tt). (24) 

For a mode with a flat loss spectrum this becomes 

0.(0) = (l+KvtffyivZiQ-up+mtf+yiM^1. (25) 
As we have already pointed out, the flth noise source 
depends only on the vth idler mode losses (and their 
parametric coupling strength), and, because the Planck 
function n(—T) of negative temperature equals 
[— 1—n(T)~], (24) may be summarized by a Nyquist-
like relation. It is interesting to note that had we done 
a purely classical circuit analysis of the paramp, putting 
a Nyquist generator with each real passive loss in all 
the exterior circuits, then we would have obtained our 
result (20) or (24) except that the factor ( 1 + ^ ) would 
be replaced by tiiV. This situation is familiar in which the 
net effect of the quantum mechanics is to replace one 
or more photon number(s) n by 1+n. The " 1 " term in 
the power spectrum is a result of the quantum mechani
cal possibility that the driving pump field quanta can 
spontaneously split into two other quanta, one in the 
signal and the other in an idler channel, which are 
dissipated by the losses. Energy must be conserved in 
the transition so that the frequencies of the two photons 
must add to give oop. There is a certain rate T for the 
spontaneous conversion of pump photons to signal and 
idler photons; that rate can be written as an integral 
over the range of possible signal and idler photon fre
quencies such that their sum is cop. The differential rate 
per unit frequency range in the signal channel must 

clearly be the product of the loss rate in the signal 
channel, ys [or, more generally, 2 ReZs(ft)3, and of the 
number of photons in the signal channel due to the " 1 " 
term, | Fss(ft)[

2/32[-2 ReYi(cop-Q)']. Integrating this 
product over frequency gives for the total rate 

r = f/32[2 ReZs(Q)][-2 ReZ<(wp-0)] 

X\Zs(tt)Zi(cop-tt)+/32\-*dQ/2ir. (26) 

That we would have obtained the same result for the 
spontaneous conversion rate by looking at the dissipa
tion in the idler channel is manifest from the symmetry 
of (26) between signal and idler channels, thus verifying 
the one and one split of the pump quanta.12 

GLW have conjectured that the lossy mode paramp 
result might be guessed from their lossless mode analy
sis. We have tried unsuccessfully to find the simple 
extension hoped for. This task was only slightly com
plicated by the fact that GLW were studying a different 
kind of noise than is represented by g8(ti), a kind which, 
as they point out, exists even when no output from the 
amplifier is possible (i.e., it includes some "zero-point 
fluctuations" which cannot give up energy). They were 
in effect studying |[l+G(r,7-)] in the limit where the 
losses are completely negligible compared with the 
parametric gain, and one pole in Fss(0) has passed far 
across the real axis, to where no stationary solution 
exists. That is, they examined the transients which, for 
us, died out and were thrown away before Eq. (16). We 
would, of course, have obtained the same result for 
those transients as they did, as our method follows 
theirs closely. However, we have not found a way to 
deduce the lossy mode results by an examination of the 
lossless case transients. 

Various reasons have been put forward to support the 
idea that no linear amplifier can exceed the noise per
formance of an ideal laser,13,14 but it has also been said 
that the bases for such general arguments are not strong 
for a variety of reasons.15 Our exact analysis of the lossy 
mode paramp gives one more verification of this idea 
but, of course, does not prove it. 

12 This spontaneous conversion rate can also be obtained by 
using the Golden Rule provided that one sums diagrams to get 
the correct form of the energy denominator which represents the 
response of the coupled signal and idler channels. The densities 
of final states for the signal and idler loss oscillators are contained 
in the real parts of their respective impedances as can be seen in 
(3) and (12). 

13 J. P. Gordon, Proc. IRE 50,1898 (1962). 
14 H. A. Haus and J. A. Mullen, Phys. Rev. 128, 2407 (1962). 
« I . R. Senitzkv, Phys. Rev. 128, 2864 (1962). 


